Bridging Semantic Gaps in Information Retrieval: Context-Based Approaches
نویسندگان
چکیده
In Information Retrieval (IR), the semantic gap is the difference between what computers store and what users expect via their queries. There are several reasons for the existence of those gaps such as homonymy and synonymy in text retrieval, or the typical difference between low-level representations and keyword-based queries in image retrieval. The objective of this work is to close these gaps by effective, scalable and not-so-expensive solutions. The main idea is to exploit available unstructured data and hidden topic models to infer surrounding contexts for better information retrieval (in both text retrieval and image retrieval). Early results obtained on two problems, namely Web search clustering and image annotation, show the effectiveness of the proposed approaches.
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملStatistical Machine Learning for Bridging the Semantic Gap in Image Retrieval
of thesis entitled: Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval Submitted by HOI, Chu Hong (Steven) With the explosive growth of multimedia data, more and more research attentions have been devoted to visual information retrieval. Image retrieval, particularly content-based image retrieval (CBIR), has been actively studied in multimedia information retrieval co...
متن کاملBridging the Semantic Gap
Content-based image retrieval systems were introduced as an alternative to avoid the need of manual tagging in traditional keyword-based image retrieval systems. However, the representation of image using visual features only involves a loss of information which is referred to as semantic gap. A number of techniques have been proposed to deal with ‘semantic gap’. This paper reviews existing app...
متن کاملExplicit vs. Latent Concept Models for Cross-Language Information Retrieval
The field of information retrieval and text manipulation (classification, clustering) still strives for models allowing semantic information to be folded in to improve performance with respect to standard bag-of-word based models. Many approaches aim at a concept-based retrieval, but differ in the nature of the concepts, which range from linguistic concepts as defined in lexical resources such ...
متن کاملExplicit Versus Latent Concept Models for Cross-Language Information Retrieval
The field of information retrieval and text manipulation (classification, clustering) still strives for models allowing semantic information to be folded in to improve performance with respect to standard bag-of-word based models. Many approaches aim at a concept-based retrieval, but differ in the nature of the concepts, which range from linguistic concepts as defined in lexical resources such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010